This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Uses of 1-Cyanoacetyl-4-phenyl-3-thiosemicarbazide in Heterocyclic Synthesis: Synthesis of Thiazole, Coumarin, and Pyridine Derivatives with Antimicrobial and Antifungal Activities

Rafat M. Mohareba; Jonathan Z. Hob; Abeer A. Mohamedc

^a Department of Chemistry, Faculty of Science, Cairo University, Giza, A.R., Egypt ^b Merck & Co., Inc., Raway, NJ, USA ^c National Organization for Drug Control & Research, Cairo, A.R., Egypt

To cite this Article Mohareb, Rafat M., Ho, Jonathan Z. and Mohamed, Abeer A.(2007) 'Uses of 1-Cyanoacetyl-4-phenyl-3-thiosemicarbazide in Heterocyclic Synthesis: Synthesis of Thiazole, Coumarin, and Pyridine Derivatives with Antimicrobial and Antifungal Activities', Phosphorus, Sulfur, and Silicon and the Related Elements, 182: 8, 1661 - 1681

To link to this Article: DOI: 10.1080/10426500701289914

URL: http://dx.doi.org/10.1080/10426500701289914

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 182:1661-1681, 2007

Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500701289914

Uses of 1-Cyanoacetyl-4-phenyl-3-thiosemicarbazide in Heterocyclic Synthesis: Synthesis of Thiazole, Coumarin, and Pyridine Derivatives with Antimicrobial and Antifungal Activities

Rafat M. Mohareb

Department of Chemistry, Faculty of Science, Cairo University, Giza, A.R. Egypt

Jonathan Z. Ho

Merck & Co., Inc., Raway, NJ, USA

Abeer A. Mohamed

National Organization for Drug Control & Research, Cairo, A.R. Egypt

The reaction of cyanoacetyl hydrazine with phenylisothiocyanate gave the thiosemicarbazide $\bf 3$. The latter underwent a series of heterocyclization reactions when it reacts with either aromatic aldehydes or α -haloketones, follwed by further reaction of the products with cyanomethylene reagents or hydrazines to give either thiazole, coumarin, or pyridine derivatives. The newly synthesized product showed antimicrobial and antifungal activities.

Keywords Coumarins; pyrazoles; pyridines; thiazoles

INTRODUCTION

The cyclization of suitable linear compounds is one of the most common and popular methods for preparing heterocyclic compounds. Unsymmetrical ureas have been cyclized to produce several heterocycles such as 1,3,4-thiadiazoles, 1,2,4-triazoles, and 1,3,5-triazines.¹ 2,4-Disubstituted semicarbazones have been proposed as dipeptide

Received November 18, 2006; accepted January 24, 2007.

R. M. Mohareb exhibits his deepest thanks to Alxander von Humboldt Stiftung in Germany for affording him a fellowship in Stuttgart during summer, 2006 and for financial support to complete this work. The authors are thankful to Prof. Dr. S. A. Ouf, Botany Department, Faculty of Science, Cairo University, for recording the biological activities of the synthesized compounds reported herein.

Address correspondence to Rafat M. Mohareb, Department of Chemistry, Faculty of Science, Cairo University, Giza, A.R. Egypt. E-mail: raafat_mohareb@yahoo.com

isosteres² and could be a new class of urea peptide mimetics. The possible biological properties of semi- and thiosemicarbazone derivatives make it attractive to study the reactivity of these compounds. α -Halocarbonyl compounds were allowed to react with alkyl- and arylidenephenylthiosemicarbazones to give 1,2,4-triazoline and 1,2,4-dithiazolidines.³ 2,4-Disubstituted thiosemicarbazides were cyclized to 1,2,4-triazoline-3-thiones and 1,3,4-thiadiazolines when treated with acyl isothiocyanates.⁴ Oxidative cyclization of substituted aldehydethiosemicarbazones, induced by different metallic salts, led to 1,2,4-triazoline derivatives.⁵⁻⁹ On the other hand, the interaction of thiosemicarbazide and dithiocarbazate derivatives with some π -acceptors such as propanedinitrile, and benzoquinone as well as naphthoquinone affords thiazines, thiadiazines, thiadiazoles, indazoles, pyridazines, oxathiadiazoles, and various fused heterocyclic compounds possible via a single electron transfer before the ring closure step.¹⁰⁻¹⁴

RESULTS AND DISCUSSION

Chemistry

We report here the results of our investigations on the reaction of cyanoacetylhydrazine 1 with phenylisothiocyanate (2) to give the 1-cyanoacetyl-4-phenylthiosemicarbazide derivative 3. The reaction has been reported in literature. We report here the uses of compound 3 in heterocyclic synthesis via exploring the scope and limitations of the functional groups present. Thus, the reaction of compound 3 with benzaldehyde (4) gave the benzal derivative 5. Structure of the latter product was based on analytical and spectral data. Thus, $^1\text{H-NMR}$ showed a singlet at δ 7.12 corresponding to CH group, a multiplet at δ 7.41–8.01 corresponding to two C_6H_5 groups, and three singlets at δ 9.76, 10.75, and 10.80 corresponding to three NH groups.

Compound **5** reacts with α -haloketones (**6a–d**) to give the thiazole derivatives **7a–d**. The analytical and spectral data are consistent with the proposed structures. As an example, the ¹H-NMR spectrum of **7a** showed two singlets at δ 5.77 and 6.25 corresponding to thiazole H-5 and CH=C groups, a multiplet at δ 6.85–7.83 corresponding to two C₆H₅ groups, two singlets at δ 9.98, 11.07 corresponding to NH and OH groups, respectively. Moreover, ¹³C NMR spectrum showed δ 58 (thiazole C-4), 116.8 (CN), 117.4, 119.5, 122.5, 124.3, 128.9, 129.5, 140.9, 143.2 (aromatic C), 167.5 (C=O), and 180.5 (thiazole C-5). On the other hand, the reaction of compound **3** with salicaldehyde (**8**) gave the coumarin derivative **9**. The reactivity of the latter product towards α -halocarbonyl compounds was studied in the

aim of formation of coumarin bearing thiazolyl group with potential biological activities. $^{16-20}$ Thus, the reaction of **9** with either ethyl chloroacetate (**6a**), phenacyl bromide (**6b**) or chloroacetone (**6c**) gave the thiazole derivatives **10a–c** (Scheme 1). The reaction of compound **3** with 4-methylphenacyl bromide (**11**) in 1,4-dioxan solution afforded the

SCHEME 1

thiazole derivative **12**. The analytical and spectral data are in agreement with the proposed structure. Thus, $^1\text{H-NMR}$ spectrum of the reaction product showed two singlets at δ 2.50, 3.80 corresponding to CH₃ and CH₂ groups, respectively, a singlet at δ 6.33 corresponding to thiazole H-5, a muliplet at δ 6.95–7.37 corresponding to C₆H₅ and C₆H₄, and a singlet at δ 10.22 Corresponding to NH group. Moreover, the $^{13}\text{C-NMR}$ showed δ 25.8 (CH₃), 33.6 (CH₂), 115.8 (CN), 118.4, 119.5, 120.6, 123.7, 126.8, 129.1, 131.5, 138.2, 140.9 (aromatic C, thiazole C-5), 155.8 (C=N), and 170.9 (C=O).

Compound 12 showed high reactivity towards many chemical reagents. Thus, it reacts with benzenediazonium chloride (13) to give the phenylhydrazone derivative 14 for which the analytical and spectral data are in agreement with the proposed structure. On the other hand, with benzaldehyde (4), compound 12 gives the benzal derivative 15. Compound 15 reacts with either hydrazine hydrate (16a) or phenylhydrazine (16b) to give the pyrazole derivatives 17a and 17b, respectively. The ¹H-NMR and ¹³C-NMR spectra of 17a are consistent with the proposed structure (see experimental section). The reaction took place via formation of amidrazone derivatives followed by Michael addition and auto-oxidation. Structures of compounds 17a,b were confirmed on the basis of analytical and spectral data (see experimental section). On the other hand, compound 15 reacts with either malononitrile (18a) or ethyl cyanoacetate (18b) to give the pyridine derivatives 19a and 19b, respectively (Scheme 2). In case of the reaction of compound 15 with malononitrile, a Michael addition took place while in case of the reaction with ethyl cyanoacetate, ethanol liberation took place. Analytical and spectral data are the basis of structures elucidation. Moreover, the reaction of compound 12 with salicaldehyde (8) gave the coumarin derivative 20.

The reaction of compound 12 with 1,3-dicarbonyl compounds was studied in the aim of formation of pyridine derivatives with potential biological activities. ^{21,22} Thus, it reacted with either acetylacetone (21a) or ethyl acetoacetate (21b) to give the pyridine derivatives 22a and 22b, respectively. Structures of the latter products were based on analytical and spectral data (see Experimental section). On the other hand, the reaction of compound 12 with either malononitrile (18a) or ethyl cyanoacetate (18b) gave the same pyridine derivative 23 (Scheme 3). The reaction took place via Michael-type addition and hydrolysis of imino group in case of the reaction with malononitrile, whereas a loss of ethanol took place in case of the reaction with ethyl cyanoacetate.

The reaction of compound **3** with both elemental sulfur and phenylisothiocyanate (**2**) gave the thiazole derivative **24**. Elemental analysis,

12
$$\xrightarrow{\text{Ph}CHO}$$
 $\xrightarrow{\text{Ph}}$ $\xrightarrow{\text$

SCHEME 2

IR, and ¹H-NMR spectrum are in agreement with the proposed structure.

Compound 3 underwent ready cyclization when heated in pyridine solution to give the 5-aminopyrazol-3-one derivative **25**. The IR spectrum of the latter product showed the presence of a C=O group

12
$$\frac{\text{18a, X= CN}}{\text{NC}}$$
 $\frac{\text{18a, X= CN}}{\text{b, X= COOEt}}$
 $\frac{\text{NC}}{\text{OH}}$
 $\frac{\text{NC}}{\text{OH}}$
 $\frac{\text{NC}}{\text{OH}}$
 $\frac{\text{NC}}{\text{OH}}$
 $\frac{\text{NC}}{\text{OH}}$
 $\frac{\text{NC}}{\text{OH}}$
 $\frac{\text{NC}}{\text{OH}}$

SCHEME 3

stretching at 1703 cm⁻¹. Moreover, the ¹H-NMR showed a singlet at δ 5.18 corresponding to an NH₂ group, a singlet at δ 6.60 corresponding to pyrazole H-4, a multiplet at δ 6.90–7.62 corresponding to C₆H₅, and two singlets at δ 10.41 and 10.98 corresponding to two NH groups, respectively. Compound **25** reacts with benzenediazonium chloride (**13**) to give phenyl hydrazone derivative **26**.

The reaction of compound **3** with cyclohexanone (**27**) in the presence of ammonium acetate gave the condensed product **28**. The reaction of compound **3** with either α -cyanocinnamonitrile (**29a**) or ethyl α -cyanocinnamate (**29b**) took place via Michael addition and oxidation to give the pyridine derivatives **30a** and **30b**, respectively (Scheme 4). The analytical and ¹H-NMR spectra are the basis of confirming the structures of the latter products (see Experimental section).

SCHEME 4

The work in this section shows the uses of thiosemicarbazide derivatives to form thiazole, coumarin, pyrazole, and pyridine derivatives. Such a group of compounds might be difficult to obtain via other reaction routes.

Microbiology

In Vitro Evaluation of Antibacterial and Antifungal Activities

Test organisms. The fungi selected for this study were Fusarium oxysporum f.sp. Lycoperici (SACC.) SNYDER et HANSEN and Helminthosporium oryea (Cochliobolus miyabeanus) (ITO and KURIB-AYASHI) DPECHSLER ex DASTUR. The former organism, an important plant pathologen causing tomato wilt in Egypt, was isolated from infected tomato plants. The latter organism was isolated from infected rice plants.

The newly synthesized products were dissolved in aqueous ethanol to give a logarithmic series of concentrations from 2 to 256 mg/L upon tenfold dilution with the growth medium and spore suspension of the test fungi. The toxicity of compounds was determined by sporeling bioassay described by Spendley and Ride,²³ which is based on the technique of Skipp and Bailey.²⁴ A suspension of fungal spores was prepared in water and pipetted into the wells of multiwell slides, followed with 25 μ L of the culture medium. The inoculated slides were then incubated at 25° C until short germ tubes appeared; approximately 50 μ m in length (at 0 h) was calculated. Five μL volumes of the prepared compound test solutions were added to the inoculated wells, one control well on each slide being treated with solvent only. The slides were then returned to the incubator until germ tubes 400 50+/- μ m long were visible in the control wells. Further growth was arrested by the addition of lactophenol aniline blue to each of the wells. Based on these assays, the percent inhibition of germ-tube growth (with respect to the controls) was plotted against the logarithm of concentration of each compound. From this, the concentrations producing 50% inhibition (ED₅₀) and 100% inhibition (MLD) were directly obtained. When the ED₅₀ or MLD values exceeded the maximum concentrations of compound used, extrapolation was performed when the last point was within 5% of the ED_{50} or MLD line, otherwise the result was expressed as >256 mg/L.

Growth. Since some compounds are lethal at relatively high doses and others at lower doses, comparison of the effect of compound on the growth, sporulation, and nucleic acid synthesis of the test fungi was undertaken at a concentration of 64 mg/L.

A series of conical flasks (250 mL capacity) containing 50 mL Czapek-Dox liquid medium were used for each fungus. Each of three flasks was supplemented with 64 mg/L of each compound. The flasks were inoculated with a 5-mm diameter agar disc cut from the margin of actively growing colonies. The flasks were incubated at 28°C for 7 days after which the produced mycelial felts were collected, washed several times with distilled water, and oven-dried at 80°C to constant mass.

Sporulation. Plates of Czapek-Dox agar supplemented with 64 mg/L of each compound were inoculated with a 5-mm diameter agar disc of the used fungus. The plates were then incubated for 7 days at 28°C. A 1-cm² section was cut from the margin of the colony and transferred to a vial containing 10 mL sterile distilled water. The suspension was spontaneously shaken for 5 min, and the concentration of spores per mL was counted in a hemocytometer. Three plates were used for each treatment.

Most of the tested compounds showed significant toxicity which is dependent on their chemical structure. The toxicity pattern of the compounds toward the two fungi is similar although the levels of compounds that were required to produce ED₅₀ and MLD for *Helminthosporium oryzae* were higher than those required for *Fusarium oxyporum f. sp. Lycopersici*.

The effect of all tested compounds on growth, sporulation and nucleic acid synthesis was tested at a concentration of 64 mg/L. Compound 20 allowed good mycelial growth, sporulation and nucleic acid synthesis by the two fungi. This indicates that the two fungi can use the N-containing heterocyclic ring as a nitrogen source. Introducing the benzal moiety to compound 3 gives compound 5, the latter showed high antimicrobial activities than the first. Comparing compounds 7a, 7b, 7c, and 7d. One can notice that all of them are thiazole derivatives with different substituted groups. Compound 7d (with the CH₃-group showed the highest activities. However, compounds 10a-c with a coumarin and thiazole moieties showed reverse activities, where 10a showed higher activities than 10b and 10c. Compound 17b with the N-Ph group showed higher activities than 17a (with the N-H group). It is of much interest that **19a** (pyridine with the 2-aminopyridine) showed better activities than **19b** (with the 2-hydroxypyridine). Similarly for compound **22b** (with 2-hydroxypyridine) showed higher activities than 22a (with 2methylpyridine).

EXPERIMENTAL

Chemistry

All melting points are uncorrected. IR spectra were recorded for (KBr) discs on a Pye Unicam SP-1000 spectrophotometer. $^1\text{H-NMR}$ and $^{13}\text{C-NMR}$ spectra were measured on a Varian EM-390-400 MHz in CD_3SOCD_3 as solvent using TMS as internal standard, and chemical shifts are expressed as δ Analytical data; they were obtained from the Microanalytical Data Unit at Cairo University, Giza, Egypt.

TABLE I Measured Concentrations (mg/L) of Each of the Tested Compounds Producing 50% Inhibition and 100% Inhibition (MLD) of Fusarium Oxysporum f. sp. Lycopersici and Helminthosporium Oryzea

Compound no.	F. Oxysporum f. sp. Lycopersici		H. oryzae	
	$\overline{\mathrm{ED}_{50}}$	MLD	$\overline{\mathrm{ED}_{50}}$	MLD
3	18	76	12	78
5	80	206	73	201
7a	11	72	24	68
7b	31	80	36	118
7c	12	60	36	63
7d	20	88	30	112
9	84	166	70	118
10a	90	236	244	78
10b	12	88	68	50
10c	31	85	36	108
12	20	88	30	112
14	88	220	70	250
15	80	206	73	201
17a	14	36	16	44
17b	16	87	45	120
19a	77	226	68	250
19b	18	88	31	102
20	84	166	70	118
22a	28	110	48	108
22b	79	196	80	203
23	84	166	70	118
24	10	70	15	78
25	88	230	190	210
26	80	250	196	>256
28	120	230	110	205

Synthesis of α -Benzalcyanoacetyl-4-phenyl-3-thiosemicarbazide (5)

To a solution of compound 3 (3.08 g, 0.013 mol) in 1,4-dioxan (100 mL) containing piperidine (1 mL), benzaldehyde (1.39 g, 0.013 mol) was added. The reaction mixture was heated under reflux for 3 h and then poured onto a beaker containing an ice/water mixture containing few drops of hydrochloric acid. The formed solid product was collected by filtration and dried.

Yellow crystals (from ethanol), 56% yield (2.40 g), m.p. 100° C. IR (ν , cm $^{-1}$): 3416-3217 (3NH), 3083 (CH aromatic), 2860 (CH=C), 2260 (CN), 1692 (C=O), 1199 (C=S). 1 H-NMR (δ , ppm): 7.12 (s, 1H, CH=C), 7.41–8.01 (m, 10H, $2C_{6}H_{5}$), 9.76, 10.75, 10.80 (3s, 3H, 3NH). Calc. for

TABLE II Effect of 64 mg/L of Each Compound on Mycelial Dry Mass, Sporulation and Nucleic Acid Synthesis of *Fusarium Oxysporum* f. sp. *Lycopersici*

Compound no.	Mycelial dry mass Mg/50 mL	Sporulation spores, $\times 10^{-5} / \text{mL}$ of culture	DNA	Nucleic acid mg/g dry mass RNA
3	168	8.4	14.5	0.18
5	258	23.8	10.4	0.22
7a	144	18.6	20.8	0.23
7 b	102	23.2	10.3	0.16
7c	198	33.5	18.6	0.23
7d	226	36.6	12.5	0.33
9	330	20.8	18.7	0.33
10a	225	8.9	6.3	0.84
10b	106	20.2	6.2	0.30
10c	104	28.5	10.0	0.23
12	198	33.5	18.6	0.23
14	256	24.6	10.8	0.34
15	258	23.8	10.4	0.22
17a	102	20.3	10.7	0.16
17b	214	23.2	10.3	0.34
19a	330	23.8	10.4	0.26
19b	258	24.8	6.3	0.38
20	330	20.8	18.7	0.33
22a	168	26.4	8.5	0.10
22b	160	20.8	12.7	0.35
23	220	20.6	16.8	0.38
24	101	18.2	9.2	0.33
25	100	10.2	6.3	0.32
26	136	30.2	16.0	0.32
28	228	24.0	11.6	0.44

 $C_{17}H_{14}N_4OS$ (322.38): C, 63.33; H, 4.37; N, 17.37; S, 9.94. Found: C, 62.83; H, 4.38; N, 16.87; S, 9.54.

Reaction of Compound (5) with α -Haloketones—General Procedure for the Synthesis of (7a), (7b), (7c), and (7d)

To a solution of compound 5 (1.26 g, 3.90×10^{-3} mol) in ethanol (40 mL), either ethyl chloroacetate (0.47 g, 3.90×10^{-3} mol), phenacyl bromide (0.77 g, 3.90×10^{-3} mol), 4-methylphenacyl bromide (0.83 g, 3.90×10^{-3} mol), or chloroacetone (0.36 g, 3.90×10^{-3} mol) was added. The reaction mixture, in each case, was heated under reflux for 3 h then poured onto a beaker containing an ice/water mixture, and the pH was adjusted to pH 7 using sodium hydroxide solution. The formed solid product, in each case, was collected by filtration.

α -Benzalcyanoacetyl-4-(4-hydroxy-3-phenylthiazol-2-ylidieno)-hydrazone (7a)

Pale green crystals (from ethanol), yield 65 % (0.93 g), m.p.118°C. IR (ν , cm⁻¹): 3525–3190 (OH, NH), 3060 (CH aromatic), 2213 (CN), 1695 (C=O), 1670 (C=N), 1640 (C=C). 1 H-NMR (δ , ppm): 5.77 (s, 1H, thiazole H-5), 6.25 (s, 1H, CH=C), 6.85–7.83 (m, 10H, 2C₆H₅), 9.98 (s, 1H, NH), 11.07 (s, 1H, OH). 13 C-NMR (DMSO): 58 (thiazole C-4), 116.8 (CN), 117.4, 119.5, 122.5, 124.3, 128.9, 129.5, 140.9, 143.2 (aromatic C), 167.5 (C=O), 180.5 (thiazole C-5). Calc. for C₁₉H₁₄N₄O₂S (362.40): C, 62.97; H, 3.89; N, 15.45; S, 8.84. Found: C, 63.48; H, 4.30; N, 14.94; S, 8.42.

α -Benzalcyanoacetyl-4-(3,4-diphenylthiazol-2-ylidieno)hydrazone (7b)

Yellow crystals (from ethanol), 73% yield (1.22 g), m.p. 127°C. IR (υ , cm⁻¹): 3300–3240 (NH), 3057 (CH aromatic), 2241 (CN), 1683 (C=O). $^1\text{H-NMR}$ (δ , ppm): 4.61 (s, 1H, thiazole H-5), 6.47 (s, 1H, CH=C), 6.67–8.18 (m, 15H, 3C₆H₅), 9.22 (s, 1H, NH). Calc. for C₂₅H₁₈N₄OS (422.50): C, 71.07; H, 4.29; N, 13.26; S, 7.58. Found: C, 70.56; H, 4.52; N, 13.66; S, 8.00.

α -Benzalcyanoacetyl-4-(4-methylphenyl-3-phenylthiazol-2-ylidieno)hydrazone (7c)

Buff crystals (from ethanol), 69% yield (1.19 g), m.p. 82°C. IR (υ , cm⁻¹): 3340–3225 (NH), 3060 (CH aromatic), 2923 (CH₃), 2240 (CN), 1727 (C=O). ¹H-NMR (δ , ppm): 3.37 (s, 3H, CH₃), 4.89 (s, 1H, thiazole H-5), 6.39 (s, 1H, CH=C), 6.64–8.16 (m, 14H, 2C₆H₅, C₆H₄), 11.14 (s, 1H, NH). Calc. for C₂₆H₂₀N₄OS (436.53): C, 71.53; H, 4.61; N, 12.83; S, 7.34. Found: C, 71.10; H, 5.08; N, 12.35; S, 7.33.

α -Benzalcyanoacetyl-4-(4-methyl-3-phenylthiazol-2-ylidieno)-hydrazone (7d)

Green crystals (from ethanol), 67% yield (0.95 g), m.p. 136°C. IR (υ , cm⁻¹): 3350–3293 (NH), 3062 (CH aromatic), 2928 (CH₃), 2220 (CN), 1684 (C=O). ¹H-NMR (δ , ppm): 3.39 (s, 3H, CH₃), 4.50 (s, 1H, thiazole H-5), 6.05 (s, 1H, CH=C), 6.85–8.09 (m, 10H, 2C₆H₅), 9.97 (s, 1H, NH). Calc. for C₂₀H₁₆N₄OS (360.43): C, 66.64; H, 4.47; N, 15.54; S, 8.89. Found: C, 66.16; H, 4.96; N, 15.05; S, 9.38.

Synthesis of 1-Coumarin-3-oyl-4-phenyl-3-thiosemicarbazide (9)

To a solution of compound **3** (3.00 g, 0.012 mol) in 1,4-dioxan (70 mL) containing piperidine (1 mL), salicaldehyde (1.56 g, 0.012 mol) was added. The reaction mixture was heated under reflux for 4 h and

then poured into a beaker containing an ice/water mixture containing few drops of hydrochloric acid. The formed solid product was collected by filtration and dried.

Orange crystals (from 1,4-dioxan), 68% yield (3.00 g), m.p. 240°C. IR (υ , cm⁻¹): 3450–3191(3NH), 3049 (CH aromatic), 1701, 1680 (2C=O), 1195 (C=S). 1 H-NMR (δ , ppm): 6.96 (s, 1H, coumarin H-4), 7.32–8.99 (m, 9H, C₆H₅, C₆H₄), 9.76, 11.18, 11.80 (3s, 3H, 3NH). 13 C-NMR (DMSO): δ 114.2, 118.4, 120.9, 121.4, 123.7, 128.5, 133.6, 136.4 (aromatic C), 156.4 (C=O), 172.5 (C=S). Calc. for C₁₇H₁₃N₃O₃S (339.37): C, 60.16; H, 3.86; N, 12.38; S, 9.44. Found: C, 59.67; H, 4.21; N, 11.89; S, 8.89.

Reaction of Compound (9) with α -Haloketones—General Procedure for the Synthesis of (10a), (10b), and (10c)

To a solution of compound **9** (0.54 g, 1.59×10^{-3} mol) in dimethyl-formamide (30 mL), either ethyl chloroacetate (0.19 g, 1.59×10^{-3} mol), phenacyl bromide (0.31 g, 1.59×10^{-3} mol), or chloroacetone (0.14 g, 1.59×10^{-3} mol) was added. The reaction mixture, in each case, was heated under reflux for 3 h and then poured into a beaker containing an ice/water mixture, and the pH was adjusted to pH 7 using sodium hydroxide solution. The formed solid product, in each case, was collected by filtration and dried.

1-Coumarin-3-oyl-3-(4-hydroxy-3-phenyl-2-ylidienothiazolo)-hydrazide (10a)

Yellow crystals (from dioxan), 77% yield (0.47 g), m.p. 180°C. IR (υ , cm⁻¹): 3550–3283 (OH, NH), 3055 (CH aromatic), 1750, 1701 (2C=O). ¹H-NMR (δ , ppm): 4.81 (s, 1H, thiazole H-5), 6.93 (s, 1H, coumarin H-4), 7.37–8.03 (m, 9H, C₆H₅, C₆H₄), 11.14 (s, 1H, NH), 11.89 (s, 1H, OH). Calc. for C₁₉H₁₃N₃O₄S (379.39): C, 60.15; H, 3.45; N, 11.07; S, 8.45. Found: C, 60.64; H, 3.93; N, 11.56; S, 7.99.

1-Coumarin-3-oyl-3-(3,4-diphenyl-2-ylidienothiazolo)-hydrazide (10b)

Brown crystals (from 1,4-dioxan), 74% yield (0.52 g), m.p. 136°C. IR (ν , cm⁻¹): 3400–3300 (NH), 3056 (CH aromatic), 1740, 1699 (2C=O). ¹H-NMR (δ , ppm): 5.60 (s, 1H, thiazole H-5), 6.93 (s, 1H, coumarin H-4), 7.30–8.91 (m, 14H, 2C₆H₅, C₆H₄), 11.13 (s, 1H, NH). Calc. for C₂₅H₁₇N₃O₃S (439.49): C, 68.32; H, 3.89; N, 9.56; S, 7.29. Found: C, 68.81; H, 4.29; N, 9.08; S, 6.94.

1-Coumarin-3-oyl-3-(4-methyl-3-phenyl-2-ylidienothiazolo)hydrazide (10c)

Buff crystals (from 1,4-dioxan), 59% yield (0.36 g), m.p. 152 °C. IR (ν , cm⁻¹): 3480–3420 (NH), 3056 (CH aromatic), 2925 (CH₃), 1730,

1702 (2C=O). 1 H-NMR (δ , ppm): 3.56 (s, 3H, CH₃), 6.12 (s, 1H, thiazole H-5), 6.97 (s, 1H, coumarin H-4), 7.36-8.21 (m, 9H, C₆H₅, C₆H₄), 11.11 (s, 1H, NH). Calc. for C₂₀H₁₅N₃O₃S (377.42): C, 63.64; H, 4.00; N, 11.13; S, 8.49. Found: C, 63.21; H, 4.49; N, 10.72; S, 7.97.

Synthesis of 1-N-Cyanoacetylhydrazono-4-(4-methylphenyl-3-phenyl)-thiazole (12)

To a solution of compound **3** (6.09 g, 0.026 mol) in 1,4-dioxan (70 mL), 4-methylphenacyl bromide (5.54 g, 0.026 mol) was added. The reaction mixture was heated under reflux for 3 h and then poured into a beaker containing an ice/water mixture, and the pH was adjusted to pH 7 using sodium hydroxide solution. The formed solid product was collected by filtration and dried.

Buff crystals (from ethanol), 64% yield (5.88 g), m.p. 160° C. IR (v, cm⁻¹): 3490–3438 (NH), 3113 (CH aromatic), 2918 (CH₃), 2255 (CN), 1729 (C=O). 1 H-NMR (δ , ppm): 2.50 (s, 3H, CH₃), 3.80 (s, 2H, CH₂), 6.33 (s, 1H, thiazole H-5), 6.95-7.37 (m, 9H, C₆H₅, C₆H₄), 10.22 (s, 1H, NH). 13 C-NMR (DMSO): δ 25.8 (CH₃), 33.6 (CH₂), 115.8 (CN), 118.4, 119.5, 120.6, 123.7, 126.8, 129.1, 131.5, 138.2, 140.9 (aromatic C, thiazole C-5), 155.8 (C=N), 170.9 (C=O). Calc. for C₁₉H₁₆N₄OS (348.42): C, 65.49; H, 4.62; N, 16.08; S, 9.20. Found: C, 65.29; H, 4.91; N, 15.59; S, 9.69.

Synthesis of α -Phenylhydrazonocyanoacetyl-4-(4-methylphenyl-3-phenyl-2-ylidienothiazolo)hydrazone (14)

To a cold $(0-5^{\circ}\mathrm{C})$ solution of compound 12 $(1.01~\mathrm{g}, 2.89 \times 10^{-3}~\mathrm{mol})$ in ethanol (50 mL) containing sodium hydroxide solution (10 mL, 10%) and a solution of benzenediazonium chloride (13) $(2.89 \times 10^{-3}~\mathrm{mol})$ [which was prepared by dissolving sodium nitrite (0.40 g, 4.30 \times 10⁻³ mol) in water, 2 mL was added to a cold solution of aniline (0.27 g, $2.89 \times 10^{-3}~\mathrm{mol}$) containing the appropriate amount of hydrochloric acid and with continuous stirring] was added with continuous stirring. The reaction mixture was stirred at room temperature for 3 h, and the formed solid product was collected by filtration and dried.

Reddish brown crystals (from 1,4-dioxan), 53% yield (0.70 g), m.p. 142° C. IR (ν , cm⁻¹): 3450–3184 (2NH), 3109 (CH aromatic), 2919 (CH₃), 2214 (CN), 1737 (C=O). 1 H-NMR (δ , ppm): 3.32 (s, 3H, CH₃), 6.35 (s, 1H, thiazole H-5), 6.98-8.27 (m, 14H, 2C₆H₅, C₆H₄), 10.50, 11.01 (2s, 2H, 2NH). Calc. for C₂₅H₂₀N₆OS (452.53): C, 66.35; H, 4.45; N, 18.57; S, 7.08. Found: C, 66.92; H, 4.95; N, 18.00; S, 7.59.

Synthesis of α -Benzalcyanoacetylhydrazino-4-(4-methylphenyl-3-phenyl-2-ylidieno)thiazole (15)

To a solution of compound 12 (1.43 g, 4.11×10^{-3} mol) in ethanol (25 mL) containing piperidine (0.5 mL), benzaldehyde (4) (0.43 g, 4.11 \times 10^{-3} mol) was added. The reaction mixture was heated under reflux for 3 h and then poured into a beaker containing an ice/water mixture containing few drops of hydrochloric acid. The formed solid product was collected by filtration and dried.

Yellow crystals (from ethanol), 83% yield (1.50 g), m.p. 100°C. IR (υ , cm $^{-1}$): 3350–3295 (NH), 3056 (CH aromatic), 2922 (CH₃), 2218 (CN), 1748 (C=O). 1 H-NMR (δ , ppm): 3.30 (s, 3H, CH₃), 6.21 (s, 1H, thiazole H-5), 6.91–7.96 (m, 15H, CH=C, 2C₆H₅, C₆H₄), 10.72 (s, 1H, NH). Calc. for C₂₆H₂₀N₄OS (436.53): C, 71.53; H, 4.61; N, 12.83; S, 7.34. Found: C, 71.32; H, 5.08; N, 12.30; S, 6.85.

Reaction of Compound (15) with Either Hydrazine Hydrate or Phenyl Hydrazine—General Procedure for the Synthesis of (17a) and (17b)

To a solution of compound 15 (0.70 g, 1.60×10^{-3} mol) in ethanol (25 mL), either hydrazine hydrate (0.08 g, 1.60×10^{-3} mol) or phenyl hydrazine (0.17 g, 1.60×10^{-3} mol) was added. The reaction mixture, in each case, was heated under reflux for 3 h and then poured onto a beaker containing an ice/water mixture. The formed solid product, in each case, was collected by filtration and dried.

3-Phenyl-4-(4-methylphenyl)-2-ylidieno(3-amino-5-phenylpyrazol-4-carbohydrazino)thiazole (17a)

Pale brown crystals (from ethanol), 64% yield (0.48 g), m.p. 170°C. IR (ν /cm⁻¹): 3500–3396 (NH₂, 2NH), 3058 (CH aromatic), 2923 (CH₃), 1700 (C=O). ¹H-NMR (δ , ppm): 3.29 (s, 3H, CH₃), 4.10 (s, 2H, NH₂), 6.12 (s, 1H, thiazole H-5), 6.23-8.42 (m, 14H, 2C₆H₅, C₆H₄), 9.40, 10.19 (2s, 2H, 2NH). ¹³C-NMR (DMSO): δ 26.6 (CH₃), 106.8, 11.7, 118.9, 119.4, 120.7, 121.7, 124.7, 133.6, 136.2, 138.9, 140.4, 141.7, 146.8 (aromatic C, thiazole C, pyrazole C), 155.9, 156.6 (2 C=N), 169.8 (C=O). Calc. for C₂₆H₂₂N₆OS (466.56): C, 66.69; H, 4.75; N, 18.01; S, 6.87. Found: C, 66.23; H, 5.24; N, 17.73; S, 7.39.

3-Phenyl-4-(4-methylphenyl)-2-ylidieno(3-amino-1,5-diphenylpyrazol-4-carbohydrazino)thiazole (17b)

Buff crystals (from ethanol), 70% yield (0.61 g), m.p. 126°C. IR (υ , cm⁻¹): 3400–3285 (NH₂, NH), 3055 (CH aromatic), 2922 (CH₃), 1700 (C=O). ¹H-NMR (δ , ppm): 3.26 (s, 3H, CH₃), 4.13 (s, 2H, NH₂), 6.02

(s, 1H, thiazole H-5), 6.36-8.06 (m, 19H, $3C_6H_5$, C_6H_4), 10.37 (s, 1H, NH). Calc. for $C_{32}H_{26}N_6OS$ (542.66): C, 70.82; H, 4.82; N, 15.48; S, 5.90. Found: C, 70.54, H, 4.68; N, 14.99; S, 6.21.

Reaction of Compound (15) with Cyanomethylene Reagents—Genaral Procedure for the Synthesis of (19a) and (19b)

To a solution of compound **15** (0.51 g, 1.16×10^{-3} mol) in ethanol (20 mL) containing triethylamine (0.5 mL), either malononitrile (0.07 g, 1.16×10^{-3} mol) or ethyl cyanoacetate (0.13 g, 1.16×10^{-3} mol) was added. The reaction mixture, in each case, was heated under reflux for 3 h and then poured into a beaker containing an ice/water mixture containing few drops of hydrochloric acid. The formed solid product, in each case, was collected by filtration and dried.

1-N-(2-Amino-3,5-dicyano-4[H]-4-phenyl-6-hydroxy)pyrido-3-phen-yl-4-(4-methylphenyl)-2-ylidienoaminothiazole (19a)

Buff crystals (from ethanol), 61% yield (0.36 g), m.p. 120°C. IR (v, cm⁻¹): 3600–3452 (OH, NH₂), 2970 (CH₃), 2240, 2210 (2CN). ¹H-NMR (δ , ppm): 3.29 (s, 3H, CH₃), 4.42 (s, 2H, NH₂), 5.82 (s, 1H, thiazole H-5), 6.22 (s, 1H, pyridine H-4), 6.56–8.02 (m, 14H, 2C₆H₅, C₆H₄), 11.55 (s, 1H, OH). ¹³C-NMR (DMS): δ25.3 (CH₃), 44.8 (pyridine C-4), 118.0, 118.6 (2 CN), 116.7, 119.5, 119.0, 121.5, 124.6, 127.1, 129.7, 136.4, 139.7, 144.5 (aromatic C, thiazole C, pyridine C-3, C-5, C-6), 155.6 (C=N), 185.8 (pyridine C-2). Calc. for C₂₉H₂₂N₆OS (502.59): C, 69.30; H, 4.41; N, 16.72; S, 6.37. Found: C, 68.82; H, 3.82; N, 16.23; S, 6.86.

1-N-(2,6-Dihydroxy-3,5-dicyano-4[H]-4-phenyl)pyrido-3-phenyl-4-(4-methylphenyl)-2-ylidienoaminothiazole (19b)

Buff crystals (from ethanol), 83% yield (0.49 g), m.p. 86°C. R (v, cm⁻¹): 3550–3446 (2OH), 3058 (CH, aromatic), 2980 (CH₃), 2200, 2210 (2CN). ¹H-NMR (δ , ppm): 3.40 (s, 3H, CH₃), 5.72 (s, 1H, thiazole H-5), 6.43 (s, 1H, pyridine H-4), 7.04–7.84 (m, 14H, 2C₆H₅, C₆H₄), 11.50, 11.53 (2s, 2H, 2OH). Calc. for C₂₉H₂₁N₅O₂S (503.58): C, 69.16; H, 4.20; N, 13.90; S, 6.36. Found: C, 69.68; H, 4.69; N, 13.45; S, 6.81.

Synthesis of 1-Coumarin-3-oyl-3-(3-phenyl-4-(4-methylphenyl)-2-ylidieno)-hydrazinothiazole (20)

To a solution of compound 12 (1.00 g, 2.87×10^{-3} mol) in ethanol (30 mL) containing piperidine (0.5 mL), salicaldehyde (0.35 g, 2.87×10^{-3} mol)

was added. The reaction mixture was heated under reflux for 3 h then poured into a beaker containing an ice/water mixture containing few drops of hydrochloric acid. The formed solid product was collected by filtration and dried.

Brick red crystals (from 1,4-dioxan), 76% yield (1.00 g), m.p. 120°C. IR (ν , cm $^{-1}$): 3345–3315 (NH), 3057 (CH aromatic), 2925 (CH $_3$), 1696, 1740 (2C=O). $^1\text{H-NMR}$ (δ , ppm): 3.30 (s, 3H, CH $_3$), 6.05 (s, 1H, thiazole H-5), 6.65–8.34 (m, 14H, coumarin H-4, C $_6\text{H}_5$, 2C $_6\text{H}_4$), 9.40 (s, 1H, NH). Calc. for C $_{26}\text{H}_{19}\text{N}_3\text{O}_3\text{S}$ (453.51): C, 68.85; H, 4.22; N, 9.26; S, 7.06. Found: C, 68.56; H, 4.64; N, 8.82; S, 6.99.

Reaction of Compound (12) with β -Ketoesters—General Procedure for the Synthesis of (22a) and (22b)

To a solution of compound 12 (1.22 g, 3.50×10^{-3} mol) in ethanol (30 mL) containing piperidine (1 mL), either acetylacetone (0.35 g, 3.50×10^{-3} mol) or ethyl acetoacetate (0.45 g, 3.50×10^{-3} mol) was added. The reaction mixture, in each case, was heated under reflux for 3 h and then poured into a beaker containing an ice/water mixture containing few drops of hydrochloric acid. The formed solid product, in each case, was collected by filtration and dried.

1-N-(5-Cyano-2,4-dimethyl-3[H]-6-oxo)pyrido-3-phenyl-4-(4-methyl-phenyl-2-ylidienoaminothiazole (22a)

Buff crystals (from ethanol), 76% yield (1.11 g), m.p. 100° C. IR (ν , cm $^{-1}$): 3056 (CH aromatic), 3029, 2922, 2858 (3CH $_3$), 2221 (CN), 1683 (C=O). 1 H-NMR (δ , ppm): 2.40, 2.50, 3.30 (3s, 9H, 3CH $_3$), 6.47 (s, 1H, thiazole H-5), 6.58 (s, 1H, pyridine H-3), 6.90–7.83 (m, 9H, C $_6$ H $_5$, C $_6$ H $_4$). Calc. for C $_2$ 4H $_2$ 0N $_4$ OS (412.51): C, 69.88; H, 4.88; N, 13.58; S, 7.77. Found: C, 69.68; H, 5.32; N, 13.10; S, 7.29.

1-N-(5-Cyano-4-methyl-3[H]-2-hydroxy-6-oxo)pyrido-3-phenyl-4-(4-methylphenyl)-2-ylidienoaminothiazole (22b)

Buff crystals (from ethanol), 83% yield (1.22 g), m.p. 146°C. IR (υ , cm⁻¹): 3550–3434 (OH), 3111 (CH aromatic), 3027, 2921 (2CH₃), 2256 (CN), 1728 (C=O). ¹H-NMR (δ , ppm): 2.50, 3.34 (2s, 6H, 2CH₃), 6.34 (s, 1H, thiazole H-5), 6.47 (s, 1H, pyridine H-3), 6.95-7.37 (m, 9H, C₆H₅, C₆H₄), 11.25 (s, 1H, OH). Calc. for C₂₃H₁₈N₄O₂S (414.48): C, 66.64; H, 4.37; N, 13.51; S, 7.73. Found: C, 67.12; H, 4.89; N, 13.99; S, 7.24.

Synthesis of 1-N-(4-Amino-5-cyano-3[H]-2-hydroxy-6-oxo)-pyrido-3-phenyl-4-(4-methylphenyl)-2-ylidienoaminothiazole (23)

To a solution of compound 12 (1.30 g, 3.73×10^{-3} mol) in ethanol (25 mL) containing triethylamine (0.5 mL), either malononitrile (0.24 g, 3.73×10^{-3} mol) or ethyl cyanoacetate (0.42 g, 3.73×10^{-3} mol) was added. The reaction mixture, in each case, was heated under reflux for 3 h and then poured onto a beaker containing an ice/water mixture containing few drops of hydrochloric acid. The formed solid product, in each case, was collected by filtration and dried.

Pale brown crystals (from ethanol), 66% yield (1.03 g), m.p. 100°C. IR (ν , cm⁻¹): 3600–3433 (OH, NH₂), 3114 (CH aromatic), 2921 (CH₃), 2257 (CN), 1729 (C=O). 1 H-NMR (δ , ppm): 2.50 (s, 3H, CH₃), 3.64 (s, 2H, NH₂), 6.34 (s, 1H, thiazole H-5), 6.47 (s, 1H, pyridine H-3), 6.96–7.37 (m, 9H, C₆H₅, C₆H₄), 11.29 (s, 1H, OH). Calc. for C₂₂H₁₇N₅O₂S (415.47): C, 63.60; H, 4.12; N, 16.85; S, 7.71. Found: C, 63.08; H, 4.18; N, 17.35; S, 7.36.

Synthesis of 3-Amino-4-phenyl-5-thioxo-2-oyl-(3-phenylthiouryl)-thiazole (24)

To a solution of compound 3 (1.50 g, 6.41×10^{-3} mol) in ethanol (100 mL) containing triethylamine (1 mL), elemental sulfur (0.20 g, 6.41×10^{-3} mol) and phenylisothiocyanate (0.86 g, 6.41×10^{-3} mol) were added. The reaction mixture was heated under reflux for 4 h and then poured into a beaker containing an ice/water mixture containing few drops of hydrochloric acid. The formed solid product was collected by filtration and dried.

Pale brown crystals (from 1,4-dioxan), 58% yield (1.50 g), m.p. 122°C. IR (ν , cm $^{-1}$): 3375–3205 (NH $_2$, 3NH), 3033 (CH aromatic), 1699 (C=O), 1210, 1193 (2C=S). 1 H-NMR (δ , ppm): 4.47 (s, 2H, NH $_2$), 6.80–7.93 (m, 10H, 2C $_6$ H $_5$), 9.79, 11.06, 12.62 (3s, 3H, 3NH). Calc. for C $_{17}$ H $_{15}$ N $_5$ OS $_3$ (401.52): C, 50.85; H, 3.76; N, 17.44; S, 23.95. Found: C, 51.35; H, 3.82; N, 16.95; S, 23.56.

Synthesis of 5-Amino-3-oxo-4[H]-1-(2-phenylthioamido)-pyrazole (25)

A solution of compound 3 (1.00 g, 4.27×10^{-3} mol) in pyridine (10 mL) was heated under reflux for 3 h and then poured into a beaker containing ice/water mixture containing few drops of hydrochloric acid. The formed solid product was collected by filtration and dried.

Buff crystals (from ethanol), 52% yield (0.52 g), m.p. 218°C. IR (υ , cm⁻¹): 3574–3189 (NH₂, 2NH), 3033 (CH aromatic), 1703 (C=O), 1203 (C=S). $^1\text{H-NMR}$ (\$\delta\$, ppm): 5.18 (s, 2H, NH₂), 6.60 (s, 1H, pyrazole H-4), 6.90–7.62 (m, 5H, C₆H₅), 10.41, 10.98 (2s, 2H, 2NH). Calc. for C₁₀H₁₀N₄OS (234.27): C, 51.26; H, 4.30; N, 23.91; S, 13.68. Found: C, 51.36; H, 4.53; N, 23.69; S, 13.67.

Synthesis of 5-Imino-4-Phenylhydrazono-3-oxo-2[H]-1-phenylthio-amidopyrazole (26)

To a cold solution $(0-5^{\circ}\mathrm{C})$ of compound **25** $(0.38~\mathrm{g}, 1.62 \times 10^{-3}~\mathrm{mol})$ in ethanol (50 mL) containing sodium hydroxide solution (10 mL, 10%) and a solution of benzenediazonium chloride $(1.62 \times^{-3}~\mathrm{mol})$ [which was prepared by dissolving sodium nitrite $(0.16~\mathrm{g}, 2.43 \times 10^{-3}~\mathrm{mol})$ in water, 2 mL was added to a cold solution of aniline $(0.15~\mathrm{g}, 1.62 \times 10^{-3}~\mathrm{mol})$ containing the appropriate amount of hydrochloric acid and with continuous stirring] was added with continuous stirring. The formed solid product was collected by filtration and dried.

Brick red crystals (from dimethylformamide), 51% yield (0.28 g), m.p. 220°C. IR (υ , cm⁻¹): 3350–3165 (4NH), 3032 (CH aromatic), 1699 (C=O), 1191 (C=S). ¹H-NMR (δ , ppm): 6.94–7.82 (m, 10H, 2C₆H₅), 9.88, 10.71, 11.50, 11.63 (4s, 4H, 4NH). Calc. for C₁₆H₁₄N₆OS (338.38): C, 56.79; H, 4.17; N, 24.83; S, 9.47. Found: C, 56.60; H, 4.54; N, 24.38; S, 10.01.

Synthesis of 5-Amino-4-cyclohexen-1-yl-3-hydroxy-1-(2-phenylthio-amido) pyrazole (28)

To a mixture of compound 3 (1.02 g, 4.35×10^{-3} mol) and cyclohexanone (0.41 g, 4.35×10^{-3} mol), ammonium acetate (0.33 g, 4.35×10^{-3} mol) was added. The reaction mixture was heated in oil bath at $140^{\circ} C$ for 1 h and then left to cool. The semisolid formed was triturated with ethanol (40 mL), and the formed solid product was collected by filtration and dried.

Yellowish brown crystals (from ethanol), 59% yield (0.82 g), m.p. 62°C. IR (ν , cm $^{-1}$): 3563–3196 (OH, NH₂, NH), 1670 (C=N). 1 H-NMR (δ , ppm): 1.54–2.04 (2m, 8H, 4CH₂), 3.36 (s, 2H, NH₂), 7.30–7.56 (m, 6H, C₆H₅, cyclohexene H-2), 8.00 (s, 1H, NH), 9.95 (s, 1H, OH). Calc. for C₁₆H₁₈N₄OS (314.40): C, 61.12; H, 5.77; N, 17.81; S, 10.19. Found: C, 61.64; H, 6.22; N, 17.35; S, 9.70.

Reaction of Compound (3) with Either α -Cyanocinnamonitrile (29a) or Ethyl α -Cyanocinnamate (29b)—General Procedure for the Synthesis of Compounds (30a) and (30b)

To a solution of compound 3 (1.11 g, 4.73×10^{-3} mol) in 1,4-dioxan (50 mL) containing triethylamine (0.5 mL), either α -cyanocinnamonitrile (0.73 g, 4.73×10^{-3} mol) or ethyl α -cyanocinnamate (0.95 g, 4.73×10^{-3} mol) was added. The reaction mixture, in each case, was heated under reflux for 3 h and then poured into a beaker containing an ice/water mixture containing few drops of hydrochloric acid. The formed solid product, in each case, was collected by filtration and dried.

6-Amino-3,5-dicyano-2-oxo-4-phenyl-1-(2-phenylthiouryl)pyridine (30a)

Yellow crystals (from ethanol), 50% yield (0.92 g), m.p. over 300°C. IR (υ , cm $^{-1}$): 3445–3237 (NH₂, 2NH), 3045 (CH aromatic), 2223, 2220 (2CN), 1688 (C=O). H-NMR (δ , ppm): 3.58 (s, 2H, NH₂), 7.19–7.99 (m, 10H, 2C₆H₅), 9.62, 10.38 (2s, 2H, 2NH). Calc. for C₂₀H₁₄N₆OS (386.43): C, 62.16; H, 3.65; N, 21.74; S, 8.29. Found: C, 62.68; H, 4.12; N, 21.15; S, 7.89.

Ethyl-6-amino-3-cyano-2-oxo-4-phenyl-1-(2-phenylthiouryl)pyridine-5-carboxylate (30b)

Orange crystals (from ethanol), 58% yield (1.20 g), m.p. 264°C. IR (υ , cm⁻¹): 3550–3177 (NH₂, 2NH), 3058 (CH aromatic), 2207 (CN), 1733, 1699 (2C=O). ¹H-NMR (δ , ppm): 1.29 (t, 3H, CH₃), 3.58 (s, 2H, NH₂), 4.42 (q, 2H, CH₂), 6.65–7.99 (m, 10H, 2C₆H₅), 9.62, 10.36 (2s, 2H, 2NH). Calc. for C₂₂H₁₉N₅O₃S (433.48): C, 60.95; H, 4.41; N, 16.15; S, 7.39. Found: C, 60.46; H, 4.92; N, 16.66; S, 7.48.

REFERENCES

- [1] M. M. Suni, V. A. Nair, and C. P. Joshua, Tetrahedron, 57, 2003 (2001).
- [2] D. Limal, V. Grand, R. Vanderesse, M. Marraud, and A. Aubry, *Tetrahedron Lett.*, 35, 3711 (1994).
- [3] S. Kabashima, T. Okawara, T. Yamasaki, and M. Furukawa, J. Heterocyclic Chem., 28, 1957 (1991).
- [4] G. G. Marian and K. Schulze, J. Heterocyclic Chem., 32, 275 (1995).
- [5] P. Lo Meo, R. Noto, and G. Werber, J. Heterocyclic Chem., 30, 765 (1993).
- [6] R. Noto, M. Gruttadauria, P. Lo Meo, V. Frenna, and G. Werber, J. Heterocyclic Chem., 32, 1277 (1995).
- [7] R. Noto, P. Lo Meo, M. Gruttadauria, and G. Werber, J. Heterocyclic Chem., 33, 863 (1996).
- [8] H. Gruttadauria, P. Lo Meo, R. Noto, and G. Werber, Gazz. Chim. Ital., 127, 277 (1997).

- [9] R. Noto, P. Lo Meo, M. Gruttadauria, and G. Werber, J. Heterocyclic Chem., 36, 667 (1999).
- [10] A. A. Hassan, Bull. Soc. Chim. Fr., 131, 424 (1994).
- [11] A.A. Hassan, Y. R. Ibrahim, A. A. Semida, and A. E. Mourad, *Liebigs Ann. Chem.*, 989 (1994).
- [12] A. A. Hassan, Phosphorus, Sulfur and Silicon, 101, 189 (1995).
- [13] A. A. Hassan, Y. R. Ibrahim, E. H. El-Tamany, A. A. Semida, and A. E. Mourad, Phosphorus, Sulfur and Silicon, 106, 167 (1995).
- [14] A. A. Hassan, N. K. Mohamed, A. A. Aly, and A. E. Mourad, Monatsh. Chem., 128, 61 (1997).
- [15] R. A. Mekheimer and R. M. Shaker, J. Chem. Research (S), 76 (1999), (M) 0449 (1999).
- [16] C. Papadopoulou, A. Geronikaki, and D. Hadjipavlou-Litina, Il Farmaco, 60 (11–12), 969 (2005).
- [17] P. Franchetti, L. Cappellacci, M. Pasqualini, R. Petrelli, V. Jayaprakasan, H. N. Jayaram, D. B. Boyd, M. D. Jain, and M. Grifantini, *Bioorg. & Med. Chem.*, 13 (6), 2045 (2005).
- [18] P. Vicini, A. Geronikaki, M. Incerti, B. Busonera, G. Poni, C. A. Cabras, and P. L. Colla, *Bioorg. & Med. Chem.*, 11(22), 4785 (2003).
- [19] X.-H. Gu, X.-Z. Wan, and B. Jiang, Bioorg. & Med. Chem. Lett., 9(4), 569 (1999).
- [20] H. El-Subbagh and A. Al-Obaid, Eur. J. of Med. Chem., 31(12), 1017 (1996).
- [21] C. Velázquez and E. E. Knaus, Bioorg. & Med. Chem., 12, 3831 (2004).
- [22] M. Suzuki, H. Iwasaki, Y. Fujikawa, M. Sakashita, M. Kitahara, and R. Sakoda, Bioorg. & Med. Chem. Lett., 11, 1285 (2001).
- [23] P. J. Spendley and J. P. Ride, Mycol. Soc., 82, 283 (1984).
- [24] R. A. Skipp and J. A. Bailey, Physiol. Plant Pathol., 9, 253 (1976).